Extorr ASCIl Firmware V0.13

Table of Contents

TabIE Of CONTENTES........ooiiiiiieeeee et e st e e e e e s st et e e e e e e s s b rbeeeeeeesesanbrneeeaaaeans 1
Introduction to the EXtOrr RGA FIrMWAIEccccooiiiiiiiiiiiiee ettt ettt e e e e s s siirre e e e e e e s s sasreeeeas 6
HOW t0 USE the DEMO, RGA.EXE ceuvvuiuiiieieiieeiiiiie e e e e ettt e e e e e e et ettt e e e eeeeeeaataaaeeeeeeesssstanaeeeesessssannaenns 6
oTo o] 110 0 JE=) (T TP P PP OPPPPPPPPP 6
How to Download the FIrMWAre............ccooiiiiiiiii e e e 8
OVEIVIBW ..eiiiiiiiiiiiiiiit ettt e e a e et e e e s s s s bbb s e et e e e s s s aab b e e et e e e s s saarraaaees 8
RESETTHE RGA CCU ..ttt ettt e st e s st e e st e e e s et e e sareeeesaanreeeenans 8
Download the boot PACKELScccie i 8
(optionally) INCrease the DAUM FAtEvviiiiiei i e et e e e e e e e e ebra e e e e e e e e e aarraaeeeaaaens 8
Download the rest of the firMWare..........eeei e 9
SEAIt the FITMWAIE .. et s et e s e e s st e e sar et e e snnneee s 9
Loading Configuration Data..............coooeeiiiiiiii i 10
Firmware INteractioncoooviiiiiiiiiiiii e e 11
OVEBIVIBW ..ttt s 11
(070 000 T [0 To 137/ 1] 11
Responses from the CCU ... 12
Changing BaUd RAtB........uuuuuuuuieiuiiiiiiiiiiiii e nnnan 14
FUNCHIONAIILY ... 15
T LT 1 o e 1= 15
LLETLe B[e [T TP PP PSPPSR PPPPPOPPI 25
DEEAS MOE ... 28
RF CaliDrate MO ..ottt ettt ettt e e sttt e e st e e e eabb e e e e snbeeeesanbeeeens 28
Pirani Calibrationoo.ueeii ittt sttt e et e e e e aabeeee s 28
Checksums and Tags ..o 30
CRECKSUMS ..ttt e bt e e s bt e e e s a b bt e e s s abt e e e saabe e e e e aabbeeesenbeeeeeannees 30
LI <Pt 30
Combining Tags and CHECKSUMSuuuuuiiiii e e nan 31
Y111+ To T PP PPPPPPPPPPRt 32
LOWIMIGSS < e 32
L T =d 011 = TR 32
YT 0] o] 1T =T N o U PRSPt 32

1Y 1 1Y o =TT 32

LU o Y4 =] g o PP PPPPPPN 33
LU 1) 1 =TT o I PP OPPPPPPT 33
[T 41T o A PP P P PP UPPPPPPPPPS 33
MURTPIEIVOILS. .o, 33
MURPHEISCAIE e, 33
FIlamentEMISSIONIMIAcoiiiiiiiieiiee ettt e e s e e s e e e s e e s es 34
[[Tot o T g Y o] | PSPPSRSO PP OPPI 34
FOCUSTIVOIES ..ttt ettt ettt e s st e e s et e s st e e s et e e e aanr e e e e smreeeesannreeees 34
SAMPIESPEILING ..ttt s 34
ENCOTING. .o 34
PressurEUNITS ..o 35
I T)TV T = o T PP PO PTRPPPPRRTPPRt 35
TR NV =TT o TSP PPTP PR PPPPTRRPPRt 35
GrOUNAVOIES ..ttt e e e st e e sttt e s sttt e e st e e e e eabreeessmreeeeeanneee 35
REFEIENCEVOILS ...ttt ettt et e s st e e e sttt e s aabb e e e e snreeeesanneeeees 36
PIraniTOrT (oo 36
PIFANIVOILS ...ttt ettt e e e e e s e et e e e r e e e s eeeesanrreee s 36
T 0110 o o oI PP PRSP PP PP PPPPP PRI 36
PIraniTEMPVOILS oo 36
SUPPIYVOIES ettt aan 37
(@ TUE: o [T o o] 1= I T<Y - 37
LN =Y o]l B LY = PSP 37
T TP Vo] K PP PRSPPI OTPPPOPPI 37
FoT T 2=] o7 0 o o 1< SRR 37
JONTZEIONIMS ..ttt e et e e sttt e e sabb et e e s ab et e e s eab bt e e e sabe e e e e aabeeeessnbeeeesanbreeens 38
REAMPVOIES . 38
Yo 10Ty o=l Gl Lo 1 1Y - PSSP PP PPPP 38
Yo 10T ol=T Gl g To P 1V - PSP PP PPPR 38
T O D To Oo - | £ T O P PP PP PO PPOPRI 38
T aTT N DT T = PP PP P PPPRPPPPN 39
FIlamENntPOWEIPCE ..ottt e e s e e e e e e s s e e e e e e e e e annrreeeeeeeeeas 39
[o] o] 1T PP PRSP PPPPPPPP 39

[011V T 1O T 39

FOCUSTIIB ...t et e e e e e e e e e e e et e e bb s e e e e st eabna s 39
PIraniCorTVOIESceeieieeeeiiteeee ettt e ettt e e e e s et b ettt e e e e s s s sabb b et e e e e e e e e anbreeeeeaeeens 39
REPEHEIVOILS ..., 40
TOTAIPTESSUIE ..eeieieieeeeette ettt ettt e e ettt e e e e e s sttt et e e e e s e aab bttt e eeeeesaaabbbbaeaeeessasnnrbaaaaaaeeeas 40
T U] (=Y Y 0] o LT O PRSP P PP PPPPTRTPPRt 40
PreSSUIETONT ..ottt 40
PreSSUMEPASCAL.eeiiiiieiiee e e e es 40
FIlAaMENTSTATUS ...ttt et e e e s st e e e st e e s s e e e e snre e e e saree e s 41
PIraniStatus c..eeeeiiiiiiiii e 41
D LY== 1|V - I PSP P PP PPPPRRTPPRt 42
1] Lo | =TT PPPPPP TP PPPPPI 42
SEIIAINUMDBET ...ttt e s st e s st e e st e e s s re e e s smreeeesnneee 42
MOAEINUMDBET ...ttt e s st e e e st e e s ane et e e snreeeesanreeeees 42
PIFANIZEIO...ccoiiiiiiiiiiii 43
PIFANILATIM. ..ottt ettt ettt e e ettt e e s e bttt e s sab bt e e s ab e et e s eab b et e e e a b et e e e abr et e e snreeeesanreeens 43
SW S BT ETICKS ...ttt e s bt e e e st e e s e e e e s e e e e e aneee 43
RESEELIETICKS .t eeeteee ettt e st e e st e s sttt e e s et e e s aabre e e e snreeeesanrreeees 43
TOTAIOFFSEL ..ttt ettt e e et e e bt e e s bttt e e s bt e e e aab et e e snree e e eanreee s 43
e Ta 1[0 KT =] P PSP P PP PPPPPPOPPI 43
LOWECAIIMASS. . et euitttee ettt ettt ettt ettt e sttt e e sttt e s s bttt e s sabb e e e e s ab et e e e ea b b et e e e n b et e e e aabe et e e enr e e e e sannreeens 44
LOWECAIRESOIULION ...ttt ettt e ettt e s sttt e s s st e e s abbe e e e snreeeesanbeeeens 44
LOWCAIIONENEIZY ..o 44
LOWECAIPOSITION ...ttt ettt e ettt e e sttt e e e aab et e s s bt e e e s ab et e e e aabee e e e snbeeeesanreeeens 44
HIghCalMass.....coo o 44
HighCalReSOIULION ... 44
HIghCallONENEIZY ...ccoeeeeeeeeeeeeeeee L 45
HIghCalPOSItioNncccoeeeeeeee 45
TOtalCaPPT .. 45
PartialCapPy ..o 45
Lo =1 Y=Y 1T 1 Y7 4V 45
o T =1 Y= o Y 1V 1 Y S 45
RV 2216 (o] 1Y/ = o o 46

RV TR o 0117/ L1 T 46

SN Lo L | =TT PP PP PP PPPPPPPP 46
DL Ty 0 1= PP PPPTPPPR PP 46
LEAKCNECKTIMEN .eeiiiieieete ettt ettt e e ettt e e e e s et b ettt e e e e e s s bbb eeeeeeeessannbreaeeeaeeens 46
TP IOSSUNE .ttt e e ettt e ettt e e ettt s e eeau s e e eeaa s eetaaa s eaesan s eetenanseaesnnnserennneansnnnnaes 47
TaArBETPIESSUIEUNITS «eevviiiieee ettt e e e et ettt e s e e e et eee et e s e e eeeaesnsaeeeeeaeaansnnaanssns a7
T (S0 oY Y F=T=T o TP 48
FilSleepTimeREMaAINING....ccc i, 48
EXTEINAIIONSOUICE .ceiiniiiiiieiiiiee ettt ettt e st r e e st e e s snre e e e snreeeesanreeeens 48
PIraniLATIMICAISETE. . ceeeiiiieeet ettt et e e st e s st r e s st e s enr e e e snreeeesnareeee s 49
PIraniZEeroCalSEtceiieiiieeeieee ettt e s e st e e e e e saareeee s 49
TASTOrE . ciiiiiiiiiiiii 49
LI I T - OO P PR PTRPRPPUPRTPPPRt 49
ElapSeATIME o, 49
(00eT 13111 1o To E O ST ST PP UPP R PPPPPP 50
ClEAICIANNEIS ...ttt et et e e e e e e e e e s s e e e e aneee 50
(ol o F=T o1 o 1= T PP PP PPP R PPPPPOP 50
LHE <] To TSP PP P PP PP PPPRPPPPPN 51
1 1= 0 N 52
Y=< o PRSPPI 52
(o111 o] =) T PP P TP PP PP PPPOPN 53
£ 0] J PRSPPI 53
372811 o -3 54
(ol] 01 (o] T PP PP PP UP R PPPPPROP 55
Lo T Lo o U PPN 56
(o111 o] =Y o o] P PP PP UP O PRPPPROP 57
T o1V T TP PO ST PP OTPPPPOPPPN 58
== PP 58
] 59
Changelog ... 60
LV PSP PP UPUPRPPPRN 60
HOW t0 CoOMPIle the DEMO AP P .cooiiiiiiii e e e e e e et e e e e e e e et eeeeeeeeseataaaeeaeeeeeeesanannns 61

Introduction to the Extorr RGA Firmware

Here is the current state of the project to make the Extorr XT series RGAs respond to simple RS-232
commands and return data to any application. In essence, you initialize (download a software file into) the
CCU and then it will respond to ASCII commands to sweep and return data on the serial line. We loosely
refer to this software as firmware. We have made a C# demo application that shows how to do this. It will
download and start the CCU, provide a graphical interface to control scanning and a console window to
display the ASCII sent and received. It will do sweeps and trends, the complete source for the demo (.cs
files), makefile for the demo, and the firmware (gpbox.I2) are in the .zip attached. It would be expected at
this point that someone wishing to use this firmware would be able to tell more by the demo source code
than the following explanation which is only an outline.

How to use the Demo, RGA.exe
1. Runthe program rga.exe. Go to the Operating Tab.

In the Communications box, select the Port of the CCU.

In the Communications box, select the Speed to download the firmware at.

Once a Port and Speed are selected, Click the Boot button to download the firmware.

A dialog box comes up and shows you the download status. It goes away when the boot is

finished.

6. If the boot is successful, a connection will automatically open at the selected Speed from the
boot.

7. You can click on Refresh to verify that you are talking to the box. The firmware has a default
value set for each parameter at this point.

8. Once the firmware has been started, the calibration data should be loaded into the RGA. (See
Loading Configuration Data for details)

vk wnN

Once the calibration data has been loaded, try performing a mass sweep. To do this, turn the filament
on by checking the “Filament On” box. Move to the Plot tab and press the “sweep” button. A plot will
appear with values that the RGA is reporting for the sweep.

The console window on the operating tab will show what is (sent) and (recv) on the serial line as the CCU
is operating. It is pretty simple, you can set parameters, ask for data such as the total pressure, do a
“sweep” from LowMass to HighMass (data is stored in the CCU) and do a “stream” to get that data.

bootfirm.exe

bootfirm.exe is a simple program which boots the firmware onto the RGA using the same method as
rga.exe. bootfirm.exe allows a user to create their own controlling program without having to worry
about booting the firmware themselves, as they can let bootfirm.exe handle that portion of the job.

bootfirm.exe communicates through a command-line interface and must be given 3 arguments.
Usage: $ bootfirm comport baudrate filepath

Arguments:
comport —the comport that is connected to the RGA to use for serial communication.
baudrate — the baud rate used to boot the firmware.
(baudrate must be one of 9600, 19200, 38400, 57600, 115200, 230400)
filepath — the path to the gpbox.12 firmware file with respect to the location of bootfirm.exe

Example

bootfirm com3 115200 ..\gpbox\gpbox.12
The following serial ports were found:
COM8 COM9 COMS3

firmware image: ..\qpbox\qpbox.12
Waiting for byte: Oxac

Downloading level-2 boot loader chunks...
{Init=1}

{PacNum=1}

{PacNum=2}

{PacNum=44}
ok:all channels cleared // starting message from RGA
Finished

To view available comports, executing bootfirm without any arguments will report a list of serial ports
found.

How to Download the Firmware

This section provides an in-depth guide on how to properly download the firmware to the RGA. The
process can be broken down into 5 steps (see Overview). An implementation of this process has been
provided in the C# source code files download.cs and bootfirm.cs. The source code has been provided to
act as an example for users to be able to refer to and to solidify their understanding of the process. It is
recommended to follow along this section by referring to download.cs to see examples of this process.
(specifically see function doDownload())

Overview
Reset the RGA CCU
Download the boot packets

(optionally) increase the baud rate
Download the rest of the firmware
Start the firmware

vk wn e

Reset the RGA CCU

In order to ensure that the RGA is in a state to accept the firmware, it must be reset.
In order to reset the RGA, it must be sent 0x00 bytes (all 0’s) for roughly one second.

One simple way to achieve this is to send 1000 bytes of 0x00 at a baud rate of 9600. (see function
resetQpBox() for example)

Once the CCU has been reset, it will respond with a byte OxAC every few seconds at 9600 Baud. This
means that the CCU is ready to accept the boot packets.

Download the boot packets
After receiving character OXAC, immediately send the boot record. Do not wait longer than 2 seconds to
send the boot record, as doing so creates the potential for errors.

The boot record consists of exactly the first 2560 bytes of the firmware file (gpbox.12).
{Init1="~~~~~~~~" [p\wegf&&NBBM, &Eetc00"} 1st part boot packet ~1200 bytes
{Init2="~~~~~gdjvbulI&gcggf77etc00"} 1st + 2nd boot packet = 2560 bytes

The CCU will reply {Init=1} now boot code is running

(optionally) increase the baud rate
After receiving {Init=1} the CCU is now capable of accepting commands to change its baud rate.

Example: {PacNum=1,Baud=115200}

The CCU will reply {PacNum=1} at the original baud rate, then immediately change to the new baud rate
for next packet. At this point, the rest of the firmware is ready to be downloaded

To avoid errors, do not wait longer than 2 seconds to send the baud packet. This is due to the fact that,
the CCU will automatically reset if it does not receive any information for more than a few seconds on
the serial line during this process.

Download the rest of the firmware
The firmware is loaded 1 packet at a time. (This is simply the remainder of the firmware file gpbox.12.)
Each packet looks like:

{PacNum=2,Index=0,Points=1000,InitCCU="/P_"/Pwegf&&" BB/, &EBOnBp9d&,r/cF4rG!3n8
CCU replies {PacNum=2}

And so on until the last firmware packet.

{PacNum=XXX,Index=XXX,Points=XXX, InitCCU="/P_"/Pwegf&&"BB",&EBnd&,r/cF4rG!3n8 "}
CCU replies {PacNum=XXX}

To avoid errors, do not wait longer than 2 seconds to send the firmware packets. This is due to the fact
that, the CCU will automatically reset if it does not receive any information for more than a few seconds
on the serial line during this process.

Start the firmware
Once all packets have been sent, start the firmware.

To start the firmware send: {Go}
ok:all channels cleared reply from CCU, firmware is running.

The firmware starts running at the same baud rate that it was loaded at. For example, if the baud rate
had been increased to 115200 for the loading process, the firmware would respond with the running
acknowledgement ok:all channels cleared at 115200 baud

*Once the firmware has been started, the calibration data should be loaded into the RGA. (See Loading
Configuration Data for details)

Loading Configuration Data
Once the firmware has been started, it is crucial to load the configuration data into the RGA.

The calibration data is RGA specific and is determined by the serial number of the specific unit.

The configuration file from the factory with the data is named snXXXX_factory_cal.cfg, where the field
XXXX stands for the specific RGA’s serial number (not necessarily 4 digits).

In the configuration file lies a field <CalibrationParameters />. Here you will find a list of the calibration
parameters specific to your RGA.

The firmware starts with general ballpark values for these parameters to get the unit running, however
these parameters must be set by the user once the firmware is loaded for optimal performance.

Using the set command as described in the Commands section, set each variable according to the
calibration parameters in the .cfg file.

The RGA/firmware does not remember these configuration parameters once reset; however, your
controlling program is free to save these variables to be loaded after each startup using the set
command.

*The “debug” variable in the CalibrationParameters has been deprecated and can be ignored.

10

Firmware Interaction

Overview

All communication to and from the CCU is line based. The CCU reads whole lines, and always sends
whole lines based off of the line feed character (‘\n’). A user program is free to read character at a time
or line at a time, but the CCU itself is line-based and most programs will probably deal with it by doing
line at a time input and output

The CCU receives lines from the controlling application, and does not echo the characters it receives,
and it does not provide any facility to allow the user to edit a line.

Generally speaking, the system revolves around a set of variables that the CCU defines. Examples are
LowMass, HighMass, SamplesPerAmu, lonizerAmps, etc. When the controlling program sets the value of
LowMass, the CCU remembers it and uses it for the low end of mass sweeps. The controlling program
can also request the value of a variable, and it will be reported over the serial line. All variables can be
read, and some variables can be set as well. Any attempt to access an unknown variable, or set the
value of a read-only variable, results in an error message as described below. Some variables are simply
remembered when set, and other variables cause various side-effects to occur. When a variable's value
is queried, some variables just report the remembered value. Others do a real-time calculation to report
the value. For example, the SupplyVolts variable reports the measured power supply voltage when its
value is queried. Itis an error to try to set this variable. Similarly, some variables cause live side-effects
to occur when set. For example, the if you set the variable FilamentEmissionMa to 2.1, the CCU causes
2.1 milliamps to be the set point for the filament emission.

The specific format of the lines that are sent to the CCU and received from the CCU is designed to
support both very simple interactions and more complicated interactions, in a syntactically consistent
way. For both sending and receiving, lines consist of colon-separated fields, as described below.

Command Syntax
*For a complete list of commands, arguments and exceptions, see the Commands section.

All Commands sent to the CCU follow the same general format:
Command:ArgName:ArgValue

Depending on the command, there may be a range of allowed arguments and values.
The CCU will respond with an error if there is a problem with a given command.

Examples

symbols
Some commands do not have any arguments.
An example of such command is the symbols command, which returns a list of all symbols.

get
Some commands require exactly 1 argument.
An example of such command is the get command.

11

Sending get with no arguments will result in the CCU responding with an error:
(send) get
(recv) error: too few fields in get command

To use the get command properly, use a colon to delineate the command call from its argument:
(send) get:ScanSpeed
(recv) ok:ScanSpeed:24.00

set
Some commands require exactly 2 arguments.
An example of such command is the set command.

Sending set with too few arguments will result in the CCU responding with an error:
(send) set:ScanSpeed
(recv) error: too few fields in set command

Attempting to set a symbol that does not exist will result in the CCU responding with an error:
(send) set:FooBar:32
(recv) error:symbol 'FooBar' unknown

To use the set command properly, a symbol and value must be provided:
(send) set:ScanSpeed:20
(recv) ok:ScanSpeed:20.00

channel
Some commands do not require any arguments, but can be optionally given arguments.
An example of such command is the channel command

Sending channel will result in the CCU responding with a list of all 12 channels and their current settings:
(send) channel

(recv) ok:channel:0:amu:0:dwell:42.00:enabled:0

(recv) ok:channel:1:amu:0:dwell:42.00:enabled:0

(recv) ok:channel:11:amu:0:dwell:42.00:enabled:0

However, channel can also accept up to 3 additional arguments in order to set specific channels:
(send) channel:4:amu:18:dwell:21:enabled:1
(recv) ok:channel:4:amu:18:dwell:21.00:enabled:1

Responses from the CCU

A list of all current responses from the CCU, and the CCU reserves the right to add more in the future. It
is a good idea to write your controlling program in such a way that it gracefully deals with prefixes from
the CCU that it does not know about (perhaps by ignoring them).

This list does not describe all possible permutations of data after a response, as this typically depends on
the command used to initiate the response. For more information on the exact responses for each
command, see the Commands section.

12

ok:
Reports data or changes made from a specific command given

error:
Reports an error

The specific error is described in text in the field after the error prefix. This text is free-formatted, but is
guaranteed to not contain colon characters, and it will all be on one line.

The CCU is free to emit error messages at any time, either in response to your input or as a result of
some serious failure that it must report. The set of error messages is anticipated to grow over time as
the system evolves, and is open-ended.

inf:
An informational report on a particular variable.

When you try to set a variable and the value cannot be set, in addition to reporting an error as described
previously, the CCU guarantees to send the current actual value via this informational report, after the
error message. For example, if you send:

(send) set:LowMass:500

the CCU will respond as in

(recv) error: value must be in the range [1..310]
(recv) inf:LowMass:1

BeginStream:
Denotes the beginning of a stream of sweep data.

s10:
Denotes the beginning of a sample of sweep data in base 10 encoding of the data.

slé:
Denotes the beginning of a sample of sweep data in base 16 encoding of the data.

s64:
Denotes the beginning of a sample of sweep data in base 64 encoding of the data.

EndStream
Denotes the end of a stream of sweep data

BeginTrend:
Denotes the beginning of a stream of trend data.

t10:
Denotes the beginning of a sample of trend data in base 10 encoding of the data.

tl6:
Denotes the beginning of a sample of trend data in base 16 encoding of the data.

13

t64:
Denotes the beginning of a sample of trend data in base 64 encoding of the data.

EndTrend
Denotes the end of a stream of trend data

Changing Baud Rate
In order to change the baud rate, the stop command should be sent before the actual set:BaudRate
command.

Sending stop forces the system into the idle state, ensuring that no data will be transmitted after the
stop command.

This guarantees that no data will be lost via transmission during the baud rate change.
Once stop has been sent, the user is free to send set:BaudRate to initiate the baud rate change.
The baud rate value must be one of 9600, 19200, 38400, 57600, 115200, 230400.

The CCU will respond with ok:BaudRate at the old baud rate, then immediately change to the requested
baud rate.

Once ok:BaudRate has been received, the user should change their own baud rate to the requested
baud rate.

Example:

(send) stop

(send) set:BaudRate:115200

(recv) ok:BaudRate:115200 // received at old baud rate, now switch to new baud rate

14

Functionality
The RGA has two main functionalities:

- To perform a mass sweep
Or

- To perform a mass trend

Sweep Mode
In sweep mode, the RGA performs a mass sweep starting from LowMass going to HighMass, scanning at
ScanSpeed samples/sec, and taking SamplesPerAmu samples/Amu.

(send) sweep
(recv) inf:FirstSweep:1
(recv) inf:LastSweep:1

The sweep command takes an optional argument count.

sweep:count:value - You can specify a count of sweeps to do. If you do not specify a count, the CCU
will sweep continuously until stopped or until another sweep is commanded. The sweep data stored can
be retrieved using the FirstSweep and LastSweep variables.

The sweep data can be retrieved by using the stream command
stream:sweep:value - Here value specifies a sweep number. That sweep number is streamed. If it is no
longer available, an error is emitted.

The stream command takes two additional optional arguments, to and from which the user can use to
specify a certain range of the sweep to report. By default, to and from are the original LowMass and
HighMass used to collect the sweep data.

The RGA will respond to a stream command with BeginStream, indicating data about the stream that is
about to happen.

Example:
(send) stream:sweep:3
(recv) BeginStream:LowMass:1:HighMass:45:SamplesPerAmu:6:sweep:3

Stream data is sent using the following format:
sEncoding:sample number:data
An example stream response following the above BeginStream response:

(recv) s10:0:2.275e-13
(recv) s10:1:2.457e-13

(recv) s10:269:2.305e-13
EndStream

15

Using the variables LowMass, HighMass, and SamplesPerAmu, a user can determine which Amu a
particular sample is from using the sample number field response.

In this example case, the number of samples from this stream goes from 0 to 269, totaling 270 samples.
This number of 270 was computed by (HighMass — LowMass + 1) * SamplesPerAmu
(45-1+1) * 6 =270 total samples.

A few more details:

- The CCU saves sweep data in a ring buffer, using the sweep_data[] array for storage. At any time the
sweeps from FirstSweep to LastSweep will be in memory, and can be streamed using the stream
command and specifying the sweep number.

- When you start a sweep with different sweep parameters, the old data is discarded. If you start a
sweep with the same parameters, the new data augments the old.

- The data is stored in a ring buffer, with the oldest data dropping off. The sweep numbers increase
regardless.

- The AutoStream variable controls whether the CCU will initiate streams of its own accord. By default,
this is set to 1. When auto streaming, the CCU checks during low-priority thread idle time whether new
sweep data is available. If so, it starts to stream the most recently-started stream.

Full Example

Use RGA.exe to follow along. The GUI is very intuitive, simply connect to the RGA as described in the
How to Download the Firmware section, set sweep and operating parameters accordingly for your
application, and press the “sweep” button on the plot tab. A mass sweep will show up, and you can look
back at the operating tab to see the data that is streaming from the RGA. You can change how the data
is being reported by changing parameters like Encoding and SamplesPerline, although base 10 encoding
and 1 sample per line is typically the easiest to interpret and the speed will suffice for most applications,
the option to change those parameters is present.

(send) symbols // RGA.exe sends symbols on connect
(recv) ok:LowMass:1

(recv) ok:HighMass:45

(recv) ok:SamplesPerAmu:6

(recv) ok:ScanSpeed:24.00

(recv) ok:AutoZero:0

(recv) ok:AutoStream:1

(recv) ok:Filament:1

(recv) ok:MultiplierVolts:0

(recv) ok:FilamentEmissionMa:2.000
(recv) ok:ElectronVolts:70

(recv) ok:Focus1Volts:-20

16

(recv) ok:SamplesPerline:1

(recv) ok:Encoding:10

(recv) ok:BaudRate:115200

(recv) ok:DegasTimer:0

(recv) ok:GroundVolts:2.562e-2
(recv) ok:ReferenceVolts:2.510
(recv) ok:PiraniTorr:1.536e-3
(recv) ok:PiraniVolts:-3.283e-1
(recv) ok:PiraniOhms:1156.

(recv) ok:PiraniTempVolts:-1.468e-1
(recv) ok:SupplyVolts:23.96

(recv) ok:QuadrupoleDegC:37.79
(recv) ok:InteriorDegC:43.46
(recv) ok:lonizerVolts:1.000e-1
(recv) ok:lonizerAmps:3.000e-1
(recv) ok:lonizerOhms:3.333e-1
(recv) ok:RfAmpVolts:0.0

(recv) ok:SourceGrid1Ma:4.184e-4
(recv) ok:SourceGrid2Ma:1.245e-3
(recv) ok:FilamentDacCoarse:3003
(recv) ok:FilamentDacFine:2047
(recv) ok:FilamentPowerPct:5.208
(recv) ok:FbPlus:0.0

(recv) ok:FbMinus:0.0

(recv) ok:Focus1FB:-20.01

(recv) ok:PiraniCorrVolts:-1.473e-1
(recv) ok:RepellerVolts:-68.00
(recv) ok:PressureAmps:-1.255e-12
(recv) ok:PressureTorr:-1.255e-10
(recv) ok:FilamentStatus:1

(recv) ok:DegasMa:3.671e-1
(recv) ok:LastSweep:0

(recv) ok:FirstSweep:0

(recv) ok:SerialNumber:133

(recv) ok:ModelNumber:300
(recv) ok:PiraniZero:3.260e-1
(recv) ok:PiranilATM:2.325

(recv) ok:SwSettleTicks:10

(recv) ok:RfSettleTicks:50

(recv) ok:TotalOffset:2000

(recv) ok:PartialOffset:2000

(recv) ok:LowCalMass:1

(recv) ok:LowCalResolution:615
(recv) ok:LowCallonEnergy:5.000

17

(recv) ok:LowCalPosition:3.700e-1

(recv) ok:HighCalMass:300

(recv) ok:HighCalResolution:1800

(recv) ok:HighCallonEnergy:5.000

(recv) ok:HighCalPosition:1.000e-1

(recv) ok:TotalCapPf:10.00

(recv) ok:PartialCapPf:3.000

(recv) ok:TotalSensitivity:10.00

(recv) ok:PartialSensitivity:6.000e-1

(recv) ok:VersionMajor:0

(recv) ok:VersionMinor:11

// At this point, calibration data from your specific .cfg file should be loaded before proceeding
(send) set:Filament:1 //turn on filament
(recv) ok:Filament:1

(send) set:HighMass:20 // using gui to set HighMass to 20
(recv) ok:HighMass:20
(send) sweep // press “sweep” button on Plot tab

(recv) inf:FirstSweep:1
(recv) inf:LastSweep:1
(recv) BeginStream:LowMass:1:HighMass:20:SamplesPerAmu:6:sweep:1
(recv) s10:0:7.502e-14
(recv) s10:1:8.644e-14
(recv) s10:2:8.811e-14
(recv) s10:3:1.010e-13
(recv) s10:4:1.005e-13
(recv) s10:5:1.049e-13
(recv) s10:6:1.032e-13
(recv) s10:7:9.260e-14
(recv) s10:8:8.811e-14
(recv) s10:9:1.137e-13
(recv) s10:10:8.890e-14
(recv) s10:11:1.110e-13
(recv) s10:12:1.129e-13
(recv) s10:13:1.006e-13
(recv) s10:14:1.033e-13
(recv) s10:15:1.125e-13
(recv) s10:16:9.523e-14
(recv) s10:17:1.147e-13
(recv) s10:18:8.926e-14
(recv) s10:19:1.110e-13
(recv) s10:20:1.103e-13
(recv) s10:21:1.118e-13
(recv) s10:22:1.076e-13
(recv) s10:23:1.238e-13

18

(recv) s10:24:1.001e-13
(recv) s10:25:9.224e-14
(recv) s10:26:9.479e-14
(recv) s10:27:9.400e-14
(recv) s10:28:1.048e-13
(recv) s10:29:9.510e-14
(recv) s10:30:7.541e-14
(recv) s10:31:1.204e-13
(recv) s10:32:1.260e-13
(recv) s10:33:1.118e-13
(recv) s10:34:7.321e-14
(recv) s10:35:1.049e-13
(recv) s10:36:9.848e-14
(recv) s10:37:1.074e-13
(recv) s10:38:9.224e-14
(recv) s10:39:1.096e-13
(recv) s10:40:1.135e-13
(recv) s10:41:9.202e-14
(recv) s10:42:1.100e-13
(recv) s10:43:9.361e-14
(recv) s10:44:1.036e-13
(recv) s10:45:1.134e-13
(recv) s10:46:1.077e-13
(recv) s10:47:1.289e-13
(recv) s10:48:1.028e-13
(recv) s10:49:1.059e-13
(recv) s10:50:1.009e-13
(recv) s10:51:9.035e-14
(recv) s10:52:8.095e-14
(recv) s10:53:9.347e-14
(recv) s10:54:9.444e-14
(recv) s10:55:9.813e-14
(recv) s10:56:1.226e-13
(recv) s10:57:9.620e-14
(recv) s10:58:8.411e-14
(recv) s10:59:1.056e-13
(recv) s10:60:1.120e-13
(recv) s10:61:9.541e-14
(recv) s10:62:9.866e-14
(recv) s10:63:8.508e-14
(recv) s10:64:8.288e-14
(recv) s10:65:9.062e-14
(recv) s10:66:1.099e-13
(recv) s10:67:9.400e-14

19

(recv) s10:68:7.792e-14
(recv) s10:69:1.053e-13
(recv) s10:70:1.006e-13
(recv) s10:71:9.602e-14
(recv) s10:72:9.057e-14
(recv) s10:73:9.383e-14
(recv) s10:74:1.104e-13
(recv) s10:75:1.035e-13
(recv) s10:76:1.161e-13
(recv) s10:77:9.207e-14
(recv) s10:78:9.633e-14
(recv) s10:79:8.662e-14
(recv) s10:80:1.111e-13
(recv) s10:81:1.012e-13
(recv) s10:82:1.409e-13
(recv) s10:83:1.093e-13
(recv) s10:84:1.043e-13
(recv) s10:85:1.231e-13
(recv) s10:86:1.118e-13
(recv) s10:87:9.774e-14
(recv) s10:88:1.009e-13
(recv) s10:89:1.136e-13
(recv) s10:90:9.945e-14
(recv) s10:91:9.027e-14
(recv) s10:92:9.695e-14
(recv) s10:93:1.019e-13
(recv) s10:94:1.161e-13
(recv) s10:95:1.215e-13
(recv) s10:96:1.028e-13
(recv) s10:97:9.875e-14
(recv) s10:98:1.025e-13
(recv) s10:99:1.075e-13
(recv) s10:100:1.081e-13
(recv) s10:101:9.708e-14
(recv) s10:102:9.673e-14
(recv) s10:103:1.120e-13
(recv) s10:104:1.027e-13
(recv) s10:105:1.022e-13
(recv) s10:106:9.646e-14
(recv) s10:107:8.306e-14
(recv) s10:108:1.114e-13
(recv) s10:109:1.062e-13
(recv) s10:110:1.152e-13
(recv) s10:111:8.196e-14

20

(recv) s10:112:1.137e-13
(recv) s10:113:9.176e-14
(recv) s10:114:9.356e-14
(recv) s10:115:9.752e-14
(recv) s10:116:8.934e-14
(recv) s10:117:1.114e-13
(recv) s10:118:1.063e-13
(recv) s10:119:1.012e-13
(recv) EndStream

(recv) inf:FirstSweep:1 // Firmware will start next sweep, sweep:count not specified so it will
(recv) inf:LastSweep:2 // sweep indefinitely until told to stop or another sweep/trend is sent
(recv) BeginStream:LowMass:1:HighMass:20:SamplesPerAmu:6:sweep:2 // AutoStream =1,
(recv) s10:0:9.299e-14 // automatically stream
(recv) s10:1:1.060e-13 // next sweep

(recv) s10:2:1.139%e-13

(recv) s10:3:1.100e-13

(recv) s10:4:8.767e-14

(recv) s10:5:1.079%e-13

(recv) s10:6:1.005e-13

(recv) s10:7:8.715e-14

(recv) s10:8:1.016e-13

(recv) s10:9:8.425e-14

(recv) s10:10:9.857e-14

(recv) s10:11:1.001e-13

(recv) s10:12:8.209e-14

(recv) s10:13:1.075e-13

(recv) s10:14:1.168e-13

(recv) s10:15:1.088e-13

(recv) s10:16:1.057e-13

(recv) s10:17:1.189e-13

(send) stop // press “stop”, tell RGA to stop sweeping
(send) set:SamplesPerLine:6 // get 6 samples per line instead of 1

(recv) ok:SamplesPerline:6

(send) sweep

(recv) inf:FirstSweep:1

(recv) inf:LastSweep:3

(recv) BeginStream:LowMass:1:HighMass:20:SamplesPerAmu:6:sweep:3

// As you can see, there are now 6 samples returned per line instead of 1
(recv) s10:0:1.637e-13:1.786e-13:1.814e-13:2.136e-13:1.670e-13:1.097e-13
(recv) s10:6:1.216e-13:2.404e-13:1.331e-12:1.550e-12:7.834e-13:1.019e-13
(recv) s10:12:1.085e-13:1.162e-13:9.646e-14:1.067e-13:9.826e-14:9.479%e-14
(recv) s10:18:1.023e-13:9.800e-14:8.767e-14:9.189e-14:1.021e-13:1.129e-13
(recv) s10:24:1.003e-13:9.844e-14:1.008e-13:1.064e-13:9.492e-14:1.053e-13
(recv) s10:30:7.506e-14:8.385e-14:1.033e-13:9.822e-14:1.028e-13:1.133e-13

21

(recv) s10:36:9.150e-14:9.488e-14:8.192e-14:8.060e-14:9.949e-14:1.002e-13
(recv) s10:42:8.139e-14:9.734e-14:1.103e-13:1.029e-13:1.082e-13:9.242e-14
(recv) s10:48:9.906e-14:1.019e-13:8.983e-14:1.019e-13:1.069e-13:9.479%e-14
(recv) s10:54:9.154e-14:1.045e-13:1.004e-13:8.354e-14:1.003e-13:8.715e-14
(recv) s10:60:9.703e-14:1.123e-13:1.002e-13:9.769e-14:9.180e-14:1.002e-13
(recv) s10:66:1.045e-13:9.488e-14:1.021e-13:1.061e-13:9.778e-14:1.171e-13
(recv) s10:72:1.044e-13:1.100e-13:1.195e-13:1.104e-13:1.054e-13:1.047e-13
(recv) s10:78:9.501e-14:1.157e-13:1.022e-13:1.142e-13:9.576e-14:1.097e-13
(recv) s10:84:1.267e-13:1.396e-13:1.508e-13:1.697e-13:1.136e-13:1.066e-13
(recv) s10:90:1.050e-13:1.348e-13:1.751e-13:1.513e-13:1.059e-13:8.917e-14
(recv) s10:96:1.119e-13:9.932e-14:1.049e-13:1.060e-13:9.848e-14:9.637e-14
(recv) s10:102:9.422e-14:1.041e-13:9.475e-14:9.405e-14:1.022e-13:9.238e-14
(recv) s10:108:9.136e-14:9.866e-14:1.043e-13:1.137e-13:1.030e-13:1.142e-13
(recv) s10:114:9.721e-14:2.269e-13:2.270e-13:1.654e-13:9.752e-14:9.290e-14
(recv) EndStream

(recv) inf:FirstSweep:1

(recv) inf:LastSweep:4

(recv) BeginStream:LowMass:1:HighMass:20:SamplesPerAmu:6:sweep:4
(recv) s10:0:1.858e-13:2.016e-13:1.771e-13:1.815e-13:1.444e-13:9.312e-14
(recv) s10:6:1.145e-13:2.552e-13:1.318e-12:1.506e-12:7.576e-13:1.104e-13
(send) stop

// Here | use the gui to change to the hex encoding. Itis very simple, just 8 hex characters
// for each 4-byte float. Unlike base 10, this is completely lossless of precision, and fairly simple.
// Then | click "sweep" again.

(send) set:Encoding:16

(recv) ok:Encoding:16

(send) sweep

(recv) inf:FirstSweep:1

(recv) inf:LastSweep:5

(recv) BeginStream:LowMass:1:HighMass:20:SamplesPerAmu:6:sweep:5
(recv) s16:0:2a34feeb:2a4bced3:2a3c7794:2a60af9e:2a32923a:29d8b847
(recv) s16:6:29e85af7:2a7eeafe:2bb4ea50:2bd4969c:2b531299:29dfd848
(recv) s16:12:29f9c5a2:29fc3efd:29¢11193:29¢24195:29ced2ec:29ee319f
(recv) s16:18:29d806f2:29d57444:2a048180:29cf8445:29e44c49:29ech5a4
(recv) s16:24:29dd12f5:29d8d19d:29c12aea:29db7d9%e:29db7d9e:29d5a6f2
(recv) s16:30:29e3e6f6:29dec19d:29f5384e:29f4ec52:29d132ed:29cda2ee
(recv) s16:36:29e0704a:29¢35841:29f5d04e:29da019¢:29e1219d:29a2c988
(recv) s16:42:29ecb5a4:29a166€0:29d9b59b:2a038429:29f46da7:29e465a0
(recv) s16:48:29e3359d:29d2e19a:29c422ec:29ca4599:29e0704a:29d44446
(recv) s16:54:29cd0aed:29df72f5:29e646f7:29c¢552ea:29d91d9%e:29¢32593
(recv) s16:60:29e0bc4a:29f4b9a4:29e679a0:29d3f845:29cf9d97:29f2599f
(recv) s16:66:29df4048:29de5c4a:29b1bae4:29e23849:29aae6e3:29c5eaeb
(recv) s16:72:29cea043:29e03d9f:2a0aad2e:2a037781:29dc2ef3:2a16dcd9
(recv) s16:78:29f87¢50:29bbb991:2a091b80:2a0fe2d9:29c5eaeb:29eeb644d

(recv) s16:84:29c4bae9:2a196f88:2a2¢3038:2a24918b:29c4ed97:2a023ad4
(recv) s16:90:2a0746d5:2a10e02e:2a1f2032:2a24f6df:29bce993:29d2e19a
(recv) s16:96:29d01¢c45:29d982f2:2a0b2f84:29ff69a8:29db4af1:29cd3d97
(recv) s16:102:29e6def7:29c58593:29f0aafa:29e4199f:29b9f191:29d4119c¢
(recv) s16:108:29e62da0:29df599e:29ddf6f3:29cfe998:29b67ae5:29dbfc49
(recv) s16:114:29e3b44b:2a67e8f8:2a81bc29:2a358a3c:29ccheed:29e8284c¢
(recv) EndStream

(recv) inf:FirstSweep:1

(recv) inf:LastSweep:6

(recv) BeginStream:LowMass:1:HighMass:20:SamplesPerAmu:6:sweep:6
(recv) s16:0:2a353e3b:2a599¢49:2a48a397:2a503599:2alcabde:29fd22fb
(send) stop

// Now | use the gui to switch to base 64 encoding. Like the others, there is always an integral number
// of floats reported per line, specified by the SamplesPerLine variable. Unlike the others,
// that sequence is returned all at once in base64, with no intervening colons. The data appears
// in one field.

// This is useful when scan speed is high and not enough data can be reported using the standard base
// 10 encoding with the set baudrate.

(send) set:Encoding:64

(recv) ok:Encoding:64

(send) sweep

(recv) inf:FirstSweep:1

(recv) inf:LastSweep:7

(recv) BeginStream:LowMass:1:HighMass:20:SamplesPerAmu:6:sweep:7
(recv) s64:0:NwgoKuSCMyo9EjwqpFVgKtZOBCpMKOgp

(recv) s64:6:KAYHKvVIEdSpQnrQrA2PPKxbfTSupLfkp

(recv) s64:12:RdDPKfUO6CmMfzeMp+TrOKU407SkqlgEq

(recv) s64:18:0+QAKqgld5ymq2fspSZjkKUIIzZinOTuMp

(recv) s64:24:9u7zKZPBuCn4/u0pP5zGKUwo6CmLgaop

(recv) s64:30:8ebQKewixCnyztkpnpXIKU3A6CIO100p

(recv) s64:36:QITOKaTh+CmM3aQpgDUEKp8F4inyCuAp

(recv) s64:42:SlzeKURwzSk5GLU pSfzbKZEZvinsXsop

(recv) s64:48:RpTcKUyQ5yn65vYpmi3TKUjY3ymdDd8p

(recv) s64:54:+D7pKU7U6imZqdQpKmgEKuvGySmcEdQp

(recv) s64:60:j6muKe0KzSn7+vgpTjj1Kffy6Cns0s4p

(recv) s64:66:Q2jQKUWs0ymWS8cwpLRYLKVH60inUOgIq

(recv) s64:72:0iHOKU4Q8Sn5Yvgp/AL2KURO1SkgkAgq

(recv) s64:78:REzZRKYO1DSpKsO4p9MrkKZtp2SnmirAp

(recv) s64:84:0gHtKYOHECrcihOgLp4RKgqKd9SmWfcgp

(recv) s64:90:9/LoKTI6FSgMOyMq3RgdKkn82yku+gsq

(recv) s64:96:0EHOKUWEzynuktMp9/LoKaAF9SmjkfAp

(recv) s64:102:1foGKvgy9yn1+uUpmMHLKeaesilEcMOp

(recv) s64:108:86LgKTesrSmZqdQp9cLnKaet7ylGgNop

(recv) s64:114:qL38KVLsdCopX4Ugm6tYKkQo1SILVOEp

23

(recv) EndStream

(recv) inf:FirstSweep:1

(recv) inf:LastSweep:8

(recv) BeginStream:LowMass:1:HighMass:20:SamplesPerAmu:6:sweep:8

(recv) s64:0:maVMKpltTiriOiggQnhKKjFWGSpTrPkp

(recv) s64:6:1VAIKoCcgSpl2bUrhH7NK3CmVCuThcUp

(send) stop

// Here | use the gui to specify that 20 floats should be returned on each line. As you

// can see, below, the lines get bigger. There is no built-in limit. The user can specify

// get all the sweep data returned on a single line if he wants. The QpBox is happy to

// do that. Or, the user can specify one data point per line. In whichever format.

(send) set:SamplesPerLine:20

(recv) ok:SamplesPerLine:20

(send) sweep

(recv) inf:FirstSweep:1

(recv) inf:LastSweep:9

(recv) BeginStream:LowMass:1:HighMass:20:SamplesPerAmu:6:sweep:9

(recv)
$64:0:jhEuKvPAYyqOZy8q6xJKKjOaHCqlHf8pgjEPKiuOhCrkB7QrmabOKxZGSyv56usp8/bdKT9gwCmjCeop7
wLQKUzI5Smg3fAp+Qb+KZ6R3Sk=

(recv)
$64:20:/X73KdUUAIrsDsIp+GbtKUJAzCICGMgpknW4KelCyyl/nQMgmi3TKepSxSmjDflpmanUKZUJxCIBN
Mcp5jq7KZON3ykpvAEQRCTNKUCE2Sk=

(recv)
$64:40:83rcKaAt5ilEEMsp917wKfP23Snm6ripOPSIKUtI7yIA/Mgp7ellKaOR8Cn3UuspTfzuKffO7CmXnc8pS
xzjKTlktSmSsb4p6abCKUNoOCk=

(recv)
$64:60:+RLWKfVy3yIMXPEpRHTVKX9IBSpARMEpP7ZblKZ8F4imiOespPsi/KfIKACUTOQpTXToKUcY2yk+yL8p
glEEKvu6/SICCM4pTaDOKaKd9Sk=

(recv)
$64:80:ULj+KUGoyynqZscpPpDBKfZu6inVFAIQjt8oKt36GSqbjdUpRHTVKUiw2ynYuAcqizUgKuCilypFNNop
8ulLbKfdabCnX+Alg6ILFKUUO2ik=

(recv)
$64:100:6ybMKZX1wSIHZNspnXHWKfN63CIJAOQp81LYKZ014yn2HulpnvncKZul12Smf4eUp7DbGKeY6uyn
yCuApgHiFKvgGayrrskcqSNjfKem6xCk=

(recv) EndStream

(recv) inf:FirstSweep:1

(recv) inf:LastSweep:10

(recv) BeginStream:LowMass:1:HighMass:20:SamplesPerAmu:6:sweep:10

(recv)
s64:0:kEU3KkSOUCr1gGgq8cRYKt5aHCrbhBEqo136KYEkiCpkOLYrVhLMK+zSTitlsNsp6Fa6KfFGOynlwucp8
Ss7ZKZwWR1Ck+8MMp81LYKewOwik=

(send) stop

// Here | use the gui to try to set the low mass to be greater than the high mass. The gui does

24

// not catch this error, but relies on the QpBox to catch any errors. You can see here the

// back-and-forth that happens. First an error is reported by the QpBox, then the QpBox emits
// an informational response to say what the value in question actually is.

(send) set:LowMass:23

(recv) error: LowMass must be less than HighMass

(recv) inf:LowMass:1

Trend Mode

In trend mode, the RGA collects sample data from a set of particular AMUs over time, forming a trend.

The trend mode uses the mass table for information on what to sample, and how long to sample for.
To see the mass table, you can send the channel command.

(send) channel
(recv) ok:channel:1:amu:0:dwell:42.00:enabled:0
(recv) ok:channel:2:amu:0:dwell:42.00:enabled:0

(recv) ok:channel:11:amu:0:dwell:42.00:enabled:0
By default, all 12 channels are cleared: set to 0 amu, 42ms dwell, and disabled
You can set channels as the following examples show:

(send) channel:2:amu:40:dwell:167:enabled:1

(recv) ok:channel:2:amu:40:dwell:167.00:enabled:1

(send) channel:1:amu:2:dwell:21:enabled:1

(recv) ok:channel:1:amu:2:dwell:21.00:enabled:1

(send) channel:2:amu:40:dwell:50:enabled:1

(recv) ok:channel:2:amu:40:dwell:50.00:enabled:1

(send) channel:2
(recv) ok:channel:2:amu:40:dwell:50.00:enabled:1

Each a channel command is sent, the response always shows the status of the indicated channel. As a
special case, you can, as above, query a channel by just giving the channel number and no other
parameters.

The mass table now after the following commands:

(send) channel

(recv) ok:channel:0:amu:0:dwell:42.00:enabled:0
(recv) ok:channel:1:amu:2:dwell:21.00:enabled:1
(recv) ok:channel:2:amu:40:dwell:50.00:enabled:1

25

(recv) ok:channel:11:amu:0:dwell:42.00:enabled:0
To do a trend based on the channels that are set up, you send the trend command.

(send) trend
(recv) inf:FirstSweep:127
(recv) inf:LastSweep:127

The trend command takes 3 optional arguments:

trend:count:value - You can specify a count of sweeps to do. If you do not specify a count, the CCU will
trend continuously until stopped or until another sweep is commanded. The trend data stored can be
retrieved using the FirstSweep and LastSweep variables.

trend:radius:value - sets how many samples to take around target, reports max(samples). Range: [0..3]
radius 0 means only the target amu.
radius 1 means one extra sample on each side (+/- 0.125 amu)
radius 2 means two extra samples on each side (+/- 0.125, +/- 0.25 amu)
radius 3 means three extra samples on each side
The default is radius 2, which makes 5 samples per target altogether.

trend:size:value - how many datasets to take per trend pass (default is one).

Examples:
(send) trend:count:10:size:3
This tells the RGA to take 10 sweeps, with radius of 2 (default because radius not specified) around
the target AMUs, with 3 samples per target AMU.

AutoSweep also works with the trend mode and will automatically initiate streams of data just like
sweep mode.

You can also request a specific trend sweep with the stream command just like in sweep mode
An example stream of trend data has the following format:

(send) stream:sweep:158

(recv) BeginTrend:sweep:158:2:40
(recv) t10:0:1.457e-12

(recv) t10:1:8.570e-13

(recv) EndTrend

Where BeginTrend:sweep:value:amul:amu2 denotes the particular sweep number that will be
reported, along with the AMUs that will be reported in their respective order. These AMUs are
determined by the enabled channels.

The data itself generally follows the sweep format:
tEncoding:sample number:data

Note: to trend Pirani pressure, use amu 998. To trend total pressure, use amu 999

26

Full Example
This example uses AutoStream enabled

(send) channel:0:amu:2:enabled:1

(recv) ok:channel:0:amu:2:dwell:42.00:enabled:1
(send) channel:1:amu:18:enabled:1

(recv) ok:channel:1:amu:18:dwell:42.00:enabled:1
(send) channel:2:amu:44:enabled:1

(recv) ok:channel:2:amu:44:dwell:42.00:enabled:1
(send) channel

(recv) ok:channel:0:amu:2:dwell:42.00:enabled:1
(recv) ok:channel:1:amu:18:dwell:42.00:enabled:1
(recv) ok:channel:2:amu:44:dwell:42.00:enabled:1
(recv) ok:channel:3:amu:0:dwell:42.00:enabled:0
(recv) ok:channel:4:amu:0:dwell:42.00:enabled:0
(recv) ok:channel:5:amu:0:dwell:42.00:enabled:0
(recv) ok:channel:6:amu:0:dwell:42.00:enabled:0
(recv) ok:channel:7:amu:0:dwell:42.00:enabled:0
(recv) ok:channel:8:amu:0:dwell:42.00:enabled:0
(recv) ok:channel:9:amu:0:dwell:42.00:enabled:0
(recv) ok:channel:10:amu:0:dwell:42.00:enabled:0
(recv) ok:channel:11:amu:0:dwell:42.00:enabled:0
(send) trend:size:3 // will take 3 samples per channel per sweep
(recv) inf:FirstSweep:166

(recv) inf:LastSweep:166

// autostream starts streaming the trend data automatically

(recv) BeginTrend:sweep:166:2:18:44 // reports mass 2 data first, then 18, then 44

(recv) t10:0:1.787e-12
(recv) t10:1:1.307e-13
(recv) t10:2:1.514e-13
(recv) t10:3:1.794e-12
(recv) t10:4:1.481e-13
(recv) t10:5:1.322e-13
(recv) t10:6:1.801e-12
(recv) t10:7:1.373e-13
(recv) t10:8:1.509e-13
(recv) EndTrend
(send) stop

(send) set:SamplesPerLine:3
(recv) ok:SamplesPerLine:3

(send) trend:size:3

(recv) inf:FirstSweep:191
(recv) inf:LastSweep:191

// mass 2, 1 round
// mass 18, 1%t round
// mass 44, 1% round
// mass 2, 2" round
// mass 18, 2" round
// mass 44, 2" round
// mass 2, 3 round
// mass 18, 3™ round
// mass 44, 3" round

// denotes end of trend data
// tell RGA to stop trending
// send 3 samples per line instead of 1

(recv) BeginTrend:sweep:191:2:18:44

(recv) t10:0:1.523e-12:1.100e-13:1.224e-13

//mass 2:mass 18:mass 44

1% round

27

(recv) t10:3:1.519e-12:1.026e-13:1.129e-13 //mass 2:mass 18:mass 44 2" round
(recv) t10:6:1.519e-12:1.179e-13:1.147e-13 //mass 2:mass 18:mass 44 3" round
(recv) EndTrend

Degas Mode
To activate degas mode, set the DegasTimer symbol to a positive value in the range [0..600].
Ex: set:DegasTimer:600 // sets the DegasTimer to 600 seconds

During degas mode the filament current is increased to DegasMa(30 mA).

DegasTimer will automatically count down until it reaches 0. You can retrieve the remaining time using
the command get:DegasTimer

After DegasTimer reaches 0, the filament current is automatically set back to FilamentEmissionMa.
Degas mode can be turned off at any time by setting DegasTimer to 0. (set:DegasTimer:0)

In order for degas mode to take effect, the filament must be on. More specifically, FilamentStatus must
be 3.

RF Calibrate Mode

To activate RF calibrate mode, use the command calibrate. The response from the CCU in this mode is
very similar to the Sweep Mode. The data starts with either c10, c16, or c64 indicating the mode as well
as encoding. When sending the calibrate command, the CCU will begin to send the calibrate data. There
are 100 samples per scan, with each sample being 50ms each. Therefore, each scan will take exactly 5
seconds. For more information on how to calibrate the machine see the RGA manual. For an example of
use see the rga.exe example software, which has implemented calibrate mode.

Pirani Calibration
The Pirani gauge requires two calibration symbols to be set in order to work properly. These symbols are
PiranilATM, and PiraniZero. The process is as follows:

1. Once the user knows they are at atmosphere, the value of the PiranilATMCalSet symbol should
be read

ex:
(send) get:PiranilATMCalSet
(recv) ok:PiranilATMCalSet:xyz

2. The user must save this value and set the PiranilATM symbol with that value

ex:
(send) set:PiranilATM:xyz
(recv) ok:PiranilATM:xyz

28

The same process above follows for the PiraniZero calibration as well, however the user must be at high
vacuum in order to do that. The total pressure gauge of the RGA can help to determine if a useris at a

low enough pressure to perform that calibration. For more info about the Pirani gauge and general
calibration, see the full RGA manual.

29

Checksums and Tags

Checksums

All of the preceding examples have assumed that the communication line between the CCU and the
controlling terminal is error free. For some applications, this assumption is reasonable for the reliability
requirements and the environment of the equipment. But you can also use checksums going both ways
to add a level of error detection. If you want to use checksums, you compute a checksum for the line
you want to send, and send it along with the line as described below. When the CCU receives such a line,
it verifies the checksum before using the line. If there is a checksum error, it doesn't use the line but
instead issues an error message.

And critically, if you send a checksum as part of your command, the CCU will include a checksum with
any response to that command. In this way, checksums are entirely optional, but they are enforced and
responded to in kind when you provide them.

You communicate the checksum as in the following example:
(send) set:LowMass:21:ck:1257

When the CCU receives this and wants to report success, it will respond with something like
(recv) ok:LowMass:21:ck:1143

If there is a checksum error, it will report an error message using the normal mechanism, but will do so
using a checksum, as in

(recv) error: LowMass must be less than HighMass:ck:3824

In general, a command line that is sent to the CCU, or data that comes from the CCU, is always a colon-
delimited sequence of fields. The checksum occupies the last two field positions. The ck indicates
checksum, and the value that follows is the actual checksum, written in base 10. The checksum applies
to the line starting with the initial prefix, and continues up to the colon before the ck, the ck itself, and
the colon after the ck.

Tags

Using a mechanism similar to checksums, the CCU supports a mode of operation that lets you more
easily match specific responses from the CCU to specific queries that you have made. For a command
line that you send, you can provide an optional numeric "tag" for that command line. Any response
from the CCU to that command will repeat back to you that numeric tag, so your program can match the
response to the particular command that generated the response. For example, if you send

(send) set:LowMass:17:tag:12345

(send) set:HighMass:45:tag:12345
(send) channel:1:amu:2:enabled:tag:23

30

the system will respond as follows:

(recv) ok:LowMass:17:tag:12345
(recv) ok:HighMass:45:tag:12345
(recv) ok:channel:1:amu:2:dwell:42.00:enabled:1:tag:23

Using tags, your controlling program is free to implement an increasing serial number for commands it
sends, or to use it in any other way. The CCU will respond with the tag given, whether it is increasing or
not. The tag occupies the last two field positions before the checksum.

Being that you can use the same tag with multiple requests, tags also provide a means of grouping sets
of requests and responses.

Combining Tags and Checksums
You can combine tags and checksum if you wish:

(send) set:SamplesPerAmu:18:tag:2:ck:2346
and get

(recv) ok:SamplesPerAmu:18:tag:2:ck:2232

31

Symbols

All symbol values can be retrieved by using the get command

Certain symbol values can be changed by using the set command
Other symbol values cannot be changed by using the set command, as they are Read-Only

LowMass
Variable that controls the lowest mass to sample when doing a mass sweep

Value Range
Type: Int

Value must be in the range [1..X10] where X depends on model number
LowMass must be less than HighMass

HighMass

Variable that controls the highest mass to sample when doing a mass sweep

Value Range
Type: Int

Value must be in the range [1..X10] where X depends on model number
HighMass must be greater than LowMass

SamplesPerAmu
Variable that controls the samples per amu to take when doing a mass sweep

Value Range
Type: Int

Value must be in the range [6..20]

ScanSpeed

Variable that controls the number of samples per second to take when doing a mass sweep.

When scanning at a large scan speed, Encoding and SamplesPerLine must be set so that all of the data
can be reported fast enough at the set baudrate, or else error will occur.

Value Range
Type: Int

Value must be one of [1000, 500, 288, 144, 72, 48, 24, 20, 12,10, 6, 5, 3, 2, 1, 0.5, 0.2, 0.1]

32

AutoZero
Attempts to automatically zero the data

Value Range
Type: Int

Value must be one of [1(on), 0(off)]

AutoStream
Automatically initiates streams of sweep/trend data any time a new sweep/trend is initiated

Value Range
Type: Int

Value must be one of [1(on), 0(off)]

Filament
Turns the filament on/off

Value Range
Type: Int

Value must be one of [1(on), O(off)]

MultiplierVolts
Sets the voltage to be applied to the electron multiplier in Volts

Value Range
Type: Int

Value must be in the range [0(off)..3000]

MultiplierScale
Scales the partial pressure readings down by this value when the reporting in units of Torr or Pascal
This must be manually set/calibrated according to the gain observed by the MultiplierVolts setpoint.

Value Range
Type: Int

Value must be greater than 0

FilamentEmissionMa
Sets the filament emission current in milliamps(mA)

Must be small enough for the set ElectronVolts

Value Range
Type: Int

Value must be in range [0.1 .. 4.0]

ElectronVolts
Sets the energy used in the ionization process

Must be large enough for the set FilamentEmissionMa

Value Range
Type: Float

Value must be in range [11..150]

Focus1Volts
Sets the focus voltage in Volts

Value Range
Type: Int

Value must be in the range [-150..0]

SamplesPerLine
Sets the samples per line for sweep data to be reported

Value Range
Type: Int

Value must be positive

Encoding
Sets the encoding scheme by which the sweep data is reported

Value Range
Type: Int

value must be one of 10, 16, 64

PressureUnits
Sets the units for the returned sweep data
default unit is amps.

Value Range
Type: Int

value must be one of O(amps), 1(torr), 2(pascal)

LastSweep
(read-only)

Reports the last(most recent) sweep number saved in memory

Value Range
Type: Int

Value must be positive or 0

FirstSweep
(read-only)

Reports the first sweep number saved in memory

Value Range
Type: Int

Value must be positive or 0

GroundVolts
(read-only)

Returns ground voltage in Volts

Value Range
Type: float

35

ReferenceVolts
(read-only)

Returns reference voltage in Volts

Value Range
Type: float

PiraniTorr
(read-only)

Returns Pirani gauge pressure in Torr

Value Range
Type: float

PiraniVolts
(read-only)

Returns Pirani gauge voltage in Volts

Value Range
Type: float

PiraniOhms
(read-only)

Returns Pirani gauge resistance in Ohms

Value Range
Type: float

PiraniTempVolts
(read-only)

Returns Pirani gauge temperature in Volts

Value Range
Type: float

36

SupplyVolts
(read-only)

Returns power supply voltage in Volts

Value Range
Type: float

QuadrupoleDegC
(read-only)

Returns probe temperature in Celsius

Value Range
Type: float

InteriorDegC
(read-only)

Returns electronics temperature in Celsius

Value Range
Type: float

lonizerVolts
(read-only)

Returns ionizer voltage in Volts

Value Range
Type: float

lonizerAmps
(read-only)

Returns ionizer current in Amps

Value Range
Type: float

37

lonizerOhms
(read-only)

Returns ionizer resistance in Ohms

Value Range
Type: float

RfAmpVolts
(read-only)

Returns RF amp voltage in Volts

Value Range
Type: float

SourceGrid1Ma
(read-only)

Returns source 1 current in milliamps(mA)

Value Range
Type: float

SourceGrid2Ma
(read-only)

Returns source 2 current in milliamps(mA)

Value Range
Type: float

FilamentDacCoarse
(read-only)

Value Range
Type: float

38

FilamentDacFine
(read-only)

Value Range
Type: float

FilamentPowerPct
(read-only)

Value Range
Type: float

FbPlus
(read-only)

Value Range
Type: float

FbMinus

(read-only)

Value Range
Type: float

Focus1FB
(read-only)

Returns focus voltage in Volts

Value Range
Type: float

PiraniCorrVolts
(read-only)

Value Range
Type: float

39

RepellerVolts
(read-only)

Returns repeller voltage in Volts

Value Range
Type: float

TotalPressure
(read-only)

Returns total pressure according to PressureUnits.

Value Range
Type: float

PressureAmps
(read-only)

Returns total pressure in Amps

Value Range
Type: float

PressureTorr
(read-only)

Returns total pressure in Torr

Value Range
Type: float

PressurePascal
(read-only)

Returns total pressure in Pascal

Value Range
Type: float

40

FilamentStatus
(read-only)

Returns filament status

When FilamentStatus=4, the filament attempted to use too much power and tripped. If this state is
reached, the filament must be turned off and back on using the Filament symbol in order for the
filament to turn back on.

Value Range
Type: Int

[0,1,23,4,5,6]

FilamentStatus=0 — Filament is OFF

FilamentStatus=1 — Filament is waiting for rough vacuum (dependent on PiraniStatus)
FilamentStatus=2 — Filament is at low emission (.1 mA) waiting for high vacuum
FilamentStatus=3 — Filament is ON (full emission)

FilamentStatus=4 — Filament Tripped

FilamentStatus=5 — Filament is asleep (see TargetPressure for more info)
FilamentStatus=6 — Filament is at full emission waiting to hit the TargetPressure

PiraniStatus
(read-only)

Returns the Pirani status. The Pirani status governs the overall filament regulation. Before the
FilamentStatus is able to advance from 1 to 2 (i.e. turn the filament ON), the Pirani status check must be
passed (PiraniStatus=3). This ensures that the device at a low enough pressure to turn the filament on
without immediately burning it out.

Value Range
Type: Int

(0,1,2,3]

PiraniStatus=0 — This is the initial state of Pirani status, and only happens on startup. At this stage, the
RGA is testing if the 2 thumb screws are inserted through the CCU to the probe. These thumb screws
ground the CCU and probe, ensuring reliable readings. If this test is not passed, the filament will not turn
on.

PiraniStatus=1 — This state means that the thumb screw ground check from status 0 above failed, and in
order to advance to the next state the thumb screws must be inserted. If the screws are the inserted
and are tight enough, after a few seconds the Pirani status will advance to the next state (2). If this state
is ever reached, the user should be alerted and told to insert the two thumb screws to hold the CCU to
the probe.

41

PiraniStatus=2 — This state means that the grounding screw check from above has successfully passed,
and the RGA is now waiting for sufficient rough vaccum (about 1e-3 Torr) to be achieved before the
filament can turn on.

PiraniStatus=3 — This state means that the Pirani checks have all passed and the system has achieved
rough vaccum or better. At this point, the FilamentStatus is allowed to advance past 1

DegasMa
(read-only)

Returns the current applied to the filament in degas mode in milliamps(mA)

Value Range
Type: float

isldle
(read-only)

Returns the idle state

Value Range
Type: Int

SerialNumber
(read-only)

Returns the serial number

Value Range
Type: Int

ModelNumber
(read-only)

Returns the model number (If the model number reads 1XXX, the unit has an electron multiplier)
Example: ModelNumber of 1300 means the unit is an XT300M

Value Range
Type: Int

42

PiraniZero
Calibration data for Pirani gauge

Value Range
Type: float

PiranilATM
Calibration data for Pirani gauge

Value Range
Type: float

SwSettleTicks
Calibration data for RGA

Value Range
Type: Int

RfSettleTicks
Calibration data for RGA

Value Range
Type: Int

TotalOffset
Calibration data for RGA

Value Range
Type: Int

PartialOffset
Calibration data for RGA

Value Range
Type: Int

43

LowCalMass
Calibration data for RGA

Value Range
Type: Int

LowCalResolution
Calibration data for RGA

Value Range
Type: Int

LowCallonEnergy
Calibration data for RGA

Value Range
Type: float

LowCalPosition
Calibration data for RGA

Value Range
Type: float

HighCalMass
Calibration data for RGA

Value Range
Type: Int

HighCalResolution
Calibration data for RGA

Value Range
Type: int

44

HighCallonEnergy
Calibration data for RGA

Value Range
Type: float

HighCalPosition
Calibration data for RGA

Value Range
Type: float

TotalCapPf
Calibration data for RGA

Value Range
Type: float

PartialCapPf
Calibration data for RGA

Value Range
Type: float

TotalSensitivity
Calibration data for RGA

Value Range
Type: float

PartialSensitivity
Calibration data for RGA

Value Range
Type: float

45

VersionMajor
Major version

Value Range
Type: Int

VersionMinor
Minor version

Value Range
Type: Int

BaudRate
Sets the baud rate used for serial communication

Value Range
Type: Int

Value must be one of 9600, 19200, 38400, 57600, 115200, 230400

DegasTimer
Sets the degas timer in seconds

For functionality, see Degas Mode

Value Range
Type: Int

Value must be in the range [0(off)..600]

LeakCheckTimer

Sets the leak check timer in seconds. This is used to temporarily prevent the filament from sleeping due
to operating above the TargetPressure for purposes such as leak checking. To check the remaining time
until sleep, the FilTimeUntilSleep output symbol should be checked instead of this symbol.

Value Range
Type: Int

Value must be in the range [120..600]

46

TargetPressure

Determines the target pressure of the RGA. For more information on how this works, see the target
pressure information in the RGA manual. The target pressure is a very useful symbol that helps to
ensure ideal filament life. When the filament is on, but the system has not yet achieved the “target
pressure”, the filament will incrementally sleep until the specified TargetPressure has been reached. The
filament starts by sleeping for 2 minutes, and doubles each time it has to go back to sleep to a maximum
of 64 minutes. Each time the filament awakens, it will test the total pressure for 2 minutes and
determine if the TargetPressure has been reached. When the total pressure is above the TargetPressure,
the filament will be in FilamentStatus=6 state, until the total pressure goes below the TargetPressure, at
which point the FilamentStatus=3 state will be achieved. This symbol is mainly used to prevent the
filament from operating at higher pressures than required to preserve the filament life during pump
down, or in the case of a leak or pump failure. Filament operating above 1e-5 Torr for extended periods
of time is strongly discouraged and will result in rapid filament/ionizer failure. Operation in the 1le-5 to
le-6 Torr range is better, however still not as good as below 1le-6. Once a system as achieved about 2e-7
Torr, the filament is able to run for a prolonged period of time with minimal wear. Below this is the
optimal operating range.

If ElectronVolts is set to any value below 70.0 EV, then the TargetPressure protection circuit will not be
used, and simple on/off logic will be applied instead at the 5e-3 range.

Value Range
Type: Float

The value of TargetPressure depends on the TargetPressureUnits symbol.

If TargetPressureUnits=1 (torr) — Value must be in the range [1e-4 .. 1e-7]
If TargetPressureUnits=2 (pascal) — Value must be in the range [1.33e-2 .. 1.34e-5]

(default: 1e-4 torr)

TargetPressureUnits
Sets units that the TargetPressure will operate at.

To change TargetPressureUnits, TargetPressure should be set to a value that is exists in the value range
of both torr and pascal (1e-4 is recommended).

Value Range
Type: Int

Value must either 1(torr), or 2(pascal)

(default: 1 (torr))

47

FilTimeUntilSleep
(read-only)

Reports the remaining time left in seconds until the filament will sleep according to the TargetPressure.
This value is only valid when FilamentStatus is either 2 or 6. In all other states the filament is either off,
or in the case of FilamentStatus=3, the TargetPressure has already been achieved.

Value Range
Type: Int

FilSleepTimeRemaining
(read-only)

Reports the remaining time left in seconds until the filament will awaken (go to FilamentStatus=2).
This value is only valid when FilamentStatus=>5 (the filament is asleep).

Value Range
Type: Int

ExternallonSource

Toggling this symbol on allows the user to remove the ionizer from the probe and supply their own ions.
The quadrupole RF will remain on and will filter the ions normally. Due to the lack of the probe’s own
filament with b/a gauge, a reliable total pressure reading cannot be made in this mode. The probe will
attempt to use the Pirani gauge to prevent glow discharge on the quadrupole rods at high pressures,
however this is not 100% bulletproof, and the user should be careful to not turn the Filament symbol in
dangerous pressure ranges.

When this symbol is toggled, in order to turn the quadrupole RF on/off, the Filament symbol must be
used 0(off), 1(on). To check if the quadrupole is on and filtering, the FilamentStatus symbol should read
3. In this mode, the FilamentStatus symbol will only read one of three states: O(user switched off),
1(Pirani pressure too high), or 3(quadrupole RF ON).

Note: This symbol is experimental and has been minimally tested. If you are experiencing issues with
this mode, please contact us and we will work to resolve the issue.

Value Range
Type: Int

Value must be either 0(off) or 1(on)

48

PiranilATMCalSet
This value is used to calibrate the Pirani gauge at atmosphere. When the user knows they are at
atmosphere, the PiranilATM calibration symbol must be set to this value.

Value Range
Type: Float

PiraniZeroCalSet
This value is used to calibrate the Pirani gauge at high vacuum. When the user knows they are at high
vacuum, the PiraniZero calibration symbol must be set to this value.

Value Range
Type: Float

T1Store
A diagnostic symbol used by the factory.

Value Range
Type: Float

T1Tag
A diagnostic symbol used by the factory.

Value Range
Type: Int

ElapsedTime
A diagnostic symbol used by the factory.

Value Range
Type: Float

Commands

clearChannels

Function
clears all channels in the mass table

Format
clearChannels

Sets - all channels:
enabled =0
amu=0

dwell =42 ms

Returns

Format
ok:all channels cleared

channel

Function
Sets and returns channel data

Setting an amu automatically enables the channel unless enable is explicitly set to 0 in the command

To trend total pressure, use amu 999
To trend pirani pressure, use amu 998. (Pirani pressure will always be reported in Torr when
PressureUnits is in current mode, as a current reading for the Pirani gauge does not exist)

Arguments

channel number (optional) - Range: [0..11]; 12 total channels
amu (optional) - amu to scan

dwell (optional) - dwell time to scan in milliseconds

enabled (optional) - [0(disabled), 1(enabled)]

Format
channel:channel number(int):amu:amu(int):dwell:dwell(float):enabled:enabled(int)

Returns
Returns data from each channel, informing channel number, amu, dwell(samples/sec), enabled

Format
ok:channel:channel number(int):amu:amu(int):dwell:dwell(float):enabled:enabled(int)

50

trend

Function
Starts trend mode

Scans through each enabled channel at the specified parameters

Arguments

count (optional) - specifies a count of sweeps to do. If you do not specify a count, the CCU will trend
continuously until stopped or until another sweep is commanded. The trend data stored can be
retrieved using the FirstSweep and LastSweep variables. (default=infinity)

radius (optional) - sets how many samples to take around target, reports max(samples). Range: [0..3]
radius 0 means only the target amu.
radius 1 means one extra sample on each side (+/- 0.125 amu)
radius 2 means two extra samples on each side (+/- 0.125, +/- 0.25 amu)
radius 3 means three extra samples on each side
The default is radius 2, which makes 5 samples per target altogether.

size (optional) - how many datasets to take per trend pass (default is one) (max 3000).

Format
trend:count:count(int):radius:radius(int):size:size(int)

Returns

Format
inf:FirstSweep:first sweep number
inf:LastSweep:/ast(or current) sweep number

If no channels are enabled, an error is emitted:
Error: "must have at least one enabled channel to perform trend mode"

51

stream
sends sweep/trend data

Arguments

from (optional) — lowest samplenum to report (default: 0)

to (optional) — highest samplenum to report (default: largest samplenum)
sweep (optional) - sweep number to report (default: most recent sweep)

Format
stream:sweep:sweep number(int):from:low mass(int):to:high mass(int)

Returns

Format

On success:

BeginStream:LowMass:from:HighMass:to:SamplesPerAmu:samples per amu:sweep:sweepnum

On failure:
"error: sweep number sweepnum not present"

sweep
Starts sweep based on variables ScanSpeed, LowMass, HighMass, SamplesPerAmu.

Arguments
count (optional) - number of sweeps to perform before stopping (default = infinity)

Format
sweep:count:count(int)

Returns
Sweep information

Format
inf:FirstSweep:first sweep number
inf:LastSweep:/ast(or current) sweep number

52

calibrate

Starts RF coil calibration mode to enable the tuning of the RF coil. For more info see the calibration

mode section in the RGA manual.

Each calibrate sweep has 100 samples, each 50 milliseconds apart from eachother. A single calibrate

sweep should take exactly 5 seconds

For calibrate mode to work properly and for the RF to turn on, the system must be below 5e-3 torr. For

more info, see the RGA manual.

Arguments

count (optional) - number of sweeps to perform before stopping (default = infinity)

Format
calibrate:count:count(int)

Returns
Calibration sweep information

Format
inf:FirstSweep:first sweep number
inf:LastSweep:/ast(or current) sweep number

stop

Function
Forces the RGA into an idle state

Stops sweeping
Stops streaming

Format
stop

Returns
N/A

53

symbols
Symbols are broken up into 4 categories:

outputs
calibration

controls
hardware

To see a complete list of the symbols and their functionalities, see the Symbols section.

Function
Returns all symbol values

Format
symbols

Returns
A list of all symbols

Format
ok:symbol name:symbol value

for all symbols

54

controls
The controls subset of all symbols

All control variables:

LowMass

HighMass
SamplesPerAmu
ScanSpeed
AutoZero
AutoStream
Filament
MultiplierVolts
FilamentEmissionMa
ElectronVolts
Focus1Volts
SamplesPerlLine
Encoding
PressureUnits
TargetPressure
TargetPressureUnits
MultiplierScale
ExternallonSupply

Format
controls

Returns
A list of all control variables

Format
ok:symbol name:symbol value

for all symbols in the control category

outputs
The outputs subset of all symbols

All output variables:

GroundVolts
ReferenceVolts
PiraniTorr
PiraniVolts
PiraniOhms
PiraniCorrVolts
PiraniTempVolts
PiranilATMCalSet
PiraniZeroCalSet
SupplyVolts
QuadrupoleDegC
InteriorDegC
lonizerVolts
lonizerAmps
lonizerOhms
RfAmpVolts
SourceGrid1Ma
SourceGrid2Ma
FilamentDacCoarse
FilamentDacFine
FilamentPowerPct
FbPlus

FbMinus
FocuslFB
RepellerVolts
PressureAmps
PressureTorr
PressurePascal
FilamentStatus
DegasMa

isldle

LastSweep
FirstSweep
FilTimeUntilSleep
FilSleepTimeRemaining
T1Store

T1Tag
ElapsedTime

56

Format
outputs

Returns
A list of all output variables

Format
ok:symbol name:symbol value

for all symbols in the outputs category

calibration
The calibration subset of all symbols

All calibration variables:

SerialNumber
ModelNumber
PiraniZero
PiranilATM
SwSettleTicks
RfSettleTicks
TotalOffset
PartialOffset
LowCalMass
LowCalResolution
LowCallonEnergy
LowCalPosition
HighCalMass
HighCalResolution
HighCallonEnergy
HighCalPosition
TotalCapPf
PartialCapPf
TotalSensitivity
PartialSensitivity
VersionMajor
VersionMinor

Format
calibration

Returns
A list of all calibration variables

Format
ok:symbol name:symbol value

for all symbols in the calibration category

hardware
The hardware subset of all symbols

All hardware variables:

BaudRate
DegasTimer
LeakCheckTimer

Format
hardware

Returns
A list of all hardware variables

Format
ok:symbol name:symbol value

for all symbols in the hardware category

get

Arguments
symbol name (required)

Format
get:symbol name

Returns
Requested symbol value

or
Error if symbol does not exist

Format
ok:symbol name:symbol value

or

error:symbol 'requested symbol' unknown

58

set

Arguments
symbol name (required)
symbol value (required)

Format
set:symbol name:symbol value

Returns

On success
ok:symbol name:symbol value

On failure
(less than fields given in command)
error: too few fields in set command

OR (requested symbol name unknown)
error:symbol ‘symbol name’ unknown

OR (error during assigning)
inf:symbol name:symbol value

OR (if requested symbol is read-only)
error: "symbol name" is read-only

59

Changelog

V0.13

Version 0.13 has been updated to provide the same functionality as VacuumPlus version 1.0.47. The
main additions have to do with the TargetPressure symbol, improved Pirani calibration, added
MultiplierScale symbol, and the calibrate command.

Additions
- Added calibrate command
- Added MultiplierScale symbol
- Added TotalPressure symbol
- Added PiraniStatus symbol
- Added LeakCheckTimer symbol
- Added TargetPressure symbol
- Added TargetPressureUnits symbol
- Added FilTimeUntilSleep symbol
- Added FilSleepTimeRemaining symbol
- Added ExternallonSource symbol
- Added PiranilATMCalSet symbol
- Added PiraniZeroCalSet symbol
- Added T1Store symbol
- Added T1Tag symbol
- Added ElapsedTime symbol

Changes
- Changed FilamentStatus symbol

Removals
- Removed PiraniZeroTemp symbol
- Removed PiranilATMTemp symbol

How to Compile the Demo App

If you wish to make your own changes to our C# Demo App, you may do so by compiling the source code
with your changes.

To aid with the compilation, we have provided a makefile that uses Microsoft NMAKE along with the
source code in the rga directory.

To build the rga.exe program, invoke Microsoft nmake in the rga directory.

From Microsoft: To use NMAKE, you must run it in a Developer Command Prompt window. A Developer
Command Prompt window has the environment variables set for the tools, libraries, and include file
paths required to build at the command line.

NMAKE is part of the MSVC C++ x64/x86 build tools library and must be installed in order to run NMAKE.

Madifying — Visual Studic Community 2019 — 16.10.3

Workloads Individual components Language packs Installation locations

|msvci Xl

MSVC w142 - VS 2019 C++ ARMB4 Spectre-mitigated libs (v14.28-16.9)
MSVC v142 - VS 2019 C++ ARM64 Spectre-mitigated libs (v14.29-16.10)
MSVC w142 - VS 2019 C++ ARMB4EC build tools (Latest — experimental)
MSVC w142 - V5 2019 C++ ARMB4EC Spectre-mitigated libs (Latest - experimental)

MSVC w142 - VS 2019 C++ x64/x86 build tools (Latest)
MSVC w142 - VS 2019 C++ x64/x86 build tools (v14.20)
MSVC w142 - VS 2019 C++ x64/x86 build tools (v14.21)
MSVC w142 - VS 2019 C++ x64/x86 build tools (v14.22)
MSVC w142 - VS 2019 C++ x64/x86 build tools (v14.23)
MSVC w142 - VS 2019 C++ x64/x86 build tools (v14.24)

As of Visual Studio 2019, the Developer Command Prompt can be found from:
Tools->Command Line->Developer Command Prompt

Git Debug Analyze Tools Extensions Window Help
K Get Tools and Features...
Connect to Database...
: Connect to Server...
| Code Snippets Manager.., Ctrl+K Ctrl+B
Choose Toolbox Items...
NuGet Package Manager
Create GUID
Error Lookup
Spy

External Tools..

Command Line Developer Command Prompt

Import and Export Settings... Developer PowerShell
Customize...

Options...

Invoking "nmake" from the rga directory builds the rga.exe and bootfirm.exe programs.

This makefile embeds the QpBox firmware, built separately, into the rga.exe executable. This firmware
binary is expected to be in a file named gpbox.I2 in directory ..\qpbox.

61

	Table of Contents
	Introduction to the Extorr RGA Firmware
	How to use the Demo, RGA.exe
	bootfirm.exe
	Example

	How to Download the Firmware
	Overview
	Reset the RGA CCU
	Download the boot packets
	(optionally) increase the baud rate
	Download the rest of the firmware
	Start the firmware

	Loading Configuration Data
	Firmware Interaction
	Overview
	Command Syntax
	Examples
	symbols
	get
	set
	channel

	Responses from the CCU
	ok:
	error:
	inf:
	BeginStream:
	s10:
	s16:
	s64:
	EndStream
	BeginTrend:
	t10:
	t16:
	t64:
	EndTrend

	Changing Baud Rate
	Example:

	Functionality
	Sweep Mode
	Full Example

	Trend Mode
	Full Example

	Degas Mode
	RF Calibrate Mode
	Pirani Calibration

	Checksums and Tags
	Checksums
	Tags
	Combining Tags and Checksums

	Symbols
	LowMass
	Value Range

	HighMass
	Value Range

	SamplesPerAmu
	Value Range

	ScanSpeed
	Value Range

	AutoZero
	Value Range

	AutoStream
	Value Range

	Filament
	Value Range

	MultiplierVolts
	Value Range

	MultiplierScale
	Value Range

	FilamentEmissionMa
	Value Range

	ElectronVolts
	Value Range

	Focus1Volts
	Value Range

	SamplesPerLine
	Value Range

	Encoding
	Value Range

	PressureUnits
	Value Range

	LastSweep
	Value Range

	FirstSweep
	Value Range

	GroundVolts
	Value Range

	ReferenceVolts
	Value Range

	PiraniTorr
	Value Range

	PiraniVolts
	Value Range

	PiraniOhms
	Value Range

	PiraniTempVolts
	Value Range

	SupplyVolts
	Value Range

	QuadrupoleDegC
	Value Range

	InteriorDegC
	Value Range

	IonizerVolts
	Value Range

	IonizerAmps
	Value Range

	IonizerOhms
	Value Range

	RfAmpVolts
	Value Range

	SourceGrid1Ma
	Value Range

	SourceGrid2Ma
	Value Range

	FilamentDacCoarse
	Value Range

	FilamentDacFine
	Value Range

	FilamentPowerPct
	Value Range

	FbPlus
	Value Range

	FbMinus
	Value Range

	Focus1FB
	Value Range

	PiraniCorrVolts
	Value Range

	RepellerVolts
	Value Range

	TotalPressure
	Value Range

	PressureAmps
	Value Range

	PressureTorr
	Value Range

	PressurePascal
	Value Range

	FilamentStatus
	Value Range

	PiraniStatus
	Value Range

	DegasMa
	Value Range

	isIdle
	Value Range

	SerialNumber
	Value Range

	ModelNumber
	Value Range

	PiraniZero
	Value Range

	Pirani1ATM
	Value Range

	SwSettleTicks
	Value Range

	RfSettleTicks
	Value Range

	TotalOffset
	Value Range

	PartialOffset
	Value Range

	LowCalMass
	Value Range

	LowCalResolution
	Value Range

	LowCalIonEnergy
	Value Range

	LowCalPosition
	Value Range

	HighCalMass
	Value Range

	HighCalResolution
	Value Range

	HighCalIonEnergy
	Value Range

	HighCalPosition
	Value Range

	TotalCapPf
	Value Range

	PartialCapPf
	Value Range

	TotalSensitivity
	Value Range

	PartialSensitivity
	Value Range

	VersionMajor
	Value Range

	VersionMinor
	Value Range

	BaudRate
	Value Range

	DegasTimer
	Value Range

	LeakCheckTimer
	Value Range

	TargetPressure
	Value Range

	TargetPressureUnits
	Value Range

	FilTimeUntilSleep
	Value Range

	FilSleepTimeRemaining
	Value Range

	ExternalIonSource
	Value Range

	Pirani1ATMCalSet
	Value Range

	PiraniZeroCalSet
	Value Range

	T1Store
	Value Range

	T1Tag
	Value Range

	ElapsedTime
	Value Range

	Commands
	clearChannels
	Function
	Format

	Sets - all channels:
	Returns
	Format

	channel
	Function
	Arguments
	Format
	Returns

	Format

	trend
	Function
	Arguments
	Format

	Returns
	Format

	stream
	Arguments
	Format

	Returns
	Format

	sweep
	Arguments
	Format

	Returns
	Format

	calibrate
	Arguments
	Format

	Returns
	Format

	stop
	Function
	Format

	Returns

	symbols
	Function
	Format

	Returns
	Format

	controls
	Format
	Returns
	Format

	outputs
	Format
	Returns
	Format

	calibration
	Format
	Returns
	Format

	hardware
	Format
	Returns
	Format

	get
	Arguments
	Format

	Returns
	Format

	set
	Arguments
	Format

	Returns
	On success
	On failure

	Changelog
	V0.13
	Additions
	Changes
	Removals

	How to Compile the Demo App

